If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-45x-36=0
a = 25; b = -45; c = -36;
Δ = b2-4ac
Δ = -452-4·25·(-36)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-75}{2*25}=\frac{-30}{50} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+75}{2*25}=\frac{120}{50} =2+2/5 $
| (7x-3)+(13x+3)=180 | | 6x+29x-7=7(5x+10) | | -149+15x=55+9x | | 9+2.5k=12+k | | 1/2((g-11)(g-8))=35 | | 17=10-7m | | U÷10+u÷5=6 | | 10-3p=5p-6 | | -9k=8k | | 4(3x-3)-3=12x-15 | | 23z+3-3=161 | | -g-19=-18g-15 | | 0.30x+0.05(2-x)=0.10(-24) | | 0.9x+5.1+-7=2(2.5x+-3) | | 27-8n=8(4-n) | | 1/5(-25+15x)=1/2(6x-10) | | 4m-6.5.m=2 | | 1.5(x)+(x)+(x)=150 | | 4w=3w-6 | | 5w=3w+4 | | 1.2x+3.7=2.2×-4.5 | | 1/8(3d-2)=1/4(2+5) | | 5v-1/10=4/5 | | 3b-8=5b+2 | | 2/3d=-18 | | 10h=4(h-10)-2h | | 0.03(4c-52)=-0.6(c-7) | | 9x+×-5x=6*5 | | 37=-3+x=30 | | -k-10k+1=-9k+9 | | X2+0.2x=26 | | -k−10k+1=-9k+9 |